在线国产一区二区_成人黄色片在线观看_国产成人免费_日韩精品免费在线视频_亚洲精品美女久久_欧美一级免费在线观看

English 中文網 漫畫網 愛新聞iNews 翻譯論壇
中國網站品牌欄目(頻道)
當前位置: Language Tips > 雙語新聞

轉基因病毒大幅提升電池性能

[ 2013-11-15 16:49]     字號 [] [] []  
免費訂閱30天China Daily雙語新聞手機報:移動用戶編輯短信CD至106580009009

轉基因病毒大幅提升電池性能

點擊進入iNews

MIT researchers have found a way to boost lithium-air battery performance, with the help of modified viruses.

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable materials for the batteries' electrodes and improving the number of charging-discharging cycles the batteries can withstand.

Now, MIT researchers have found that adding genetically modified viruses to the production of nanowires -- wires that are about the width of a red blood cell, and which can serve as one of a battery's electrodes -- could help solve some of these problems.

The new work is described in a paper published in the journal Nature Communications, co-authored by graduate student Dahyun Oh, professors Angela Belcher and Yang Shao-Horn, and three others. The key to their work was to increase the surface area of the wire, thus increasing the area where electrochemical activity takes place during charging or discharging of the battery.

The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules of metals from water and bind them into structural shapes. In this case, wires of manganese oxide -- a "favorite material" for a lithium-air battery's cathode, Belcher says -- were actually made by the viruses. But unlike wires "grown" through conventional chemical methods, these virus-built nanowires have a rough, spiky surface, which dramatically increases their surface area.

Belcher, the W.M. Keck Professor of Energy and an affiliate of MIT's Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is "really similar to how an abalone grows its shell" -- in that case, by collecting calcium from seawater and depositing it into a solid, linked structure.

The increase in surface area produced by this method can provide "a big advantage," Belcher says, in lithium-air batteries' rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous chemicals, this process can be carried out at room temperature using a water-based process.

Also, rather than isolated wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.

A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.

Altogether, these modifications have the potential to produce a battery that could provide two to three times greater energy density -- the amount of energy that can be stored for a given weight -- than today's best lithium-ion batteries, a closely related technology that is today's top contender, the researchers say.

Belcher emphasizes that this is early-stage research, and much more work is needed to produce a lithium-air battery that's viable for commercial production. This work only looked at the production of one component, the cathode; other essential parts, including the electrolyte -- the ion conductor that lithium ions traverse from one of the battery's electrodes to the other -- require further research to find reliable, durable materials. Also, while this material was successfully tested through 50 cycles of charging and discharging, for practical use a battery must be capable of withstanding thousands of these cycles.

While these experiments used viruses for the molecular assembly, Belcher says that once the best materials for such batteries are found and tested, actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

In addition to Oh, Belcher, and Shao-Horn, the work was carried out by MIT research scientists Jifa Qi and Yong Zhang and postdoc Yi-Chun Lu. The work was supported by the U.S. Army Research Office and the National Science Foundation.

據外媒11月13日報道,麻省理工學院(MIT)研究人員發現,轉基因病毒可以大大提升電池的性能。

鋰空氣電池近年來一直是研究熱點,它的容電量有潛力大幅提高。不過,科學家需要先找到更加耐用的電極材料,增加電池的可充電次數,這個想法才能實現。

麻省理工學院研究人員讓轉基因病毒參與到納米線的生產中,解決了一些技術難題。納米線的寬度類似紅細胞,在電池中可以用作電極。技術的關鍵在于增加納米線的表面積,增加充電和用電過程中電極的活躍范圍。這一研究成果已經在學術雜志《自然通訊》上發表。

一種名叫M13的轉基因病毒能夠抓取水中的金屬分子,組成穩定的結構。科學家用M13病毒收集制作電池陰極的極佳材料——氧化錳,制造大約80納米寬的氧化錳納米線。和傳統化學方法制造的納米線相比,病毒納米線表面粗糙不平,表面積顯著增大。最后還要加入少量鈀等金屬元素,提升電極的導電性,促進充電和放電時的化學反應。

麻省理工學院能源教授貝爾徹說,M13的生物合成過程和鮑魚長殼差不多。鮑魚就是從海水中收集鈣,再組成堅固的外殼。

有了病毒的幫助,新型電池的能量密度能夠達到目前頂尖鋰離子電池的2到3倍,并且在諸多方面優勢明顯。新電池電極表面積更大,充電和放電效率更高。其制造工藝更加簡單、安全,病毒于常溫狀態下就能在水中完成工作,傳統方法必須的高溫條件和危險化學品已經沒有用武之地。病毒制造的納米線相互交錯關聯,制成的電極更加穩定。另外,電池對電極的金屬材質要求降低,成本也更加合理。

貝爾徹強調說,研究還處于早期階段,只做出了陰極,而電解液等關鍵部分仍然有待開發。此外,新型電池經測試可以充電50次,要真正應用,這個數字得上千才行。

貝爾徹還表示,目前在實驗中雖然利用生物技術,通過病毒收集金屬分子,但可能不是長久之計。如果將來找到最合適的材料,并且通過測試,工業生產中可能會采用別的辦法,方便定量控制。

多年來,科學家一直熱衷于病毒電池的研究。2010年,馬里蘭大學科學家讓煙草花葉病毒(TMV)幫助電池進行化學反應,收集電流,增強電池的儲電能力。同年,麻省理工學院科學家馬克?艾倫也提出,可以利用M13病毒制造氟化鐵陰極,希望制造輕巧持久的可充電池。

相關閱讀

單身排行榜——記者領先

美聯儲繼續其經濟刺激措施

倫敦地產:自住還是炒房

西班牙鋼琴家被指練琴擾民 或被判七年半監禁

大嘴惹禍 印高官“享受強奸”言論招致批評

中國領導人將實施經濟改革

(王琦琛 編輯:信蓮)

 
中國日報網英語點津版權說明:凡注明來源為“中國日報網英語點津:XXX(署名)”的原創作品,除與中國日報網簽署英語點津內容授權協議的網站外,其他任何網站或單位未經允許不得非法盜鏈、轉載和使用,違者必究。如需使用,請與010-84883631聯系;凡本網注明“來源:XXX(非英語點津)”的作品,均轉載自其它媒體,目的在于傳播更多信息,其他媒體如需轉載,請與稿件來源方聯系,如產生任何問題與本網無關;本網所發布的歌曲、電影片段,版權歸原作者所有,僅供學習與研究,如果侵權,請提供版權證明,以便盡快刪除。
 

關注和訂閱

人氣排行

翻譯服務

中國日報網翻譯工作室

我們提供:媒體、文化、財經法律等專業領域的中英互譯服務
電話:010-84883468
郵件:translate@chinadaily.com.cn
 
 
主站蜘蛛池模板: 亚洲国产福利 | 欧美精品一区二区视频 | 久久久国产一区二区三区 | 久久精品电影 | 草逼操 | 91在线精品一区二区三区 | 国产精品视频一二三区 | 91精品久久久久久久久 | 男人的天堂在线视频 | 亚洲色图偷拍自拍 | 日韩精品一区在线 | 国产一区二区精品 | 国产精品久久久久久 | 黄色毛片免费看 | 欧美精品 在线观看 | 亚洲一级毛片 | 久久久91精品国产一区二区三区 | 91豆花视频| 九一视频在线免费观看 | 欧美日韩一区二区三区在线观看 | 91精品国产乱码久久久久久久久 | 久久精品亚洲精品 | 亚洲激情第一页 | 亚洲欧美中文日韩在线v日本 | 欧美一区二区三区在线视频 | 日本好好热视频 | www.日韩av.com | 国产精品成人3p一区二区三区 | 国产成人精品不卡 | 欧美 日韩 亚洲 一区 | 国产成人在线视频网站 | 日本一区中文字幕 | 欧美一级全黄 | 国产精品一区二区久久精品爱微奶 | 国产欧美综合一区二区三区 | 日韩中文一区二区三区 | 亚洲精品免费看 | 日本一区二区不卡 | 国产精品久久嫩一区二区 免费 | 精品久久一区二区 | 爱草视频 |